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A formulation of the relativistic optimized potential method (ROPM) within spin-density functional theory
is presented. Various forms of the corresponding ROPM equations are given that allow to determine the
spin-averaged and spin-dependent exchange-correlation fields. For a numerical basis-set-free implementation
of the scheme, we use the exact exchange. Results are presented for a number of free atoms that demonstrate
the implication of the fully relativistic approach as well as the impact of making use of the Krieger-Li-lafarate
approximation. The application of the present ROPM scheme to solids is briefly discussed.
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I. INTRODUCTION

Density functional theory (DFT) is nowadays a widely
used tool for calculating the electronic and magnetic proper-
ties of a vast spectrum of systems ranging from atoms and
molecules to solids, from insulators to metals.!? Its tremen-
dous success in treating the many-body problem is to a large
part due to the virtue of the local (spin-) density approxima-
tion [L(S)DA] for the exchange-correlation functional.> DFT
functionals have evolved from using the density as basic
variable to a second generation involving generalized gradi-
ent approximations (GGAs) and, finally, to the so-called third
generation version which uses orbitals as ingredients to cap-
ture the physics of a broad range of systems.*~'> The latter
approach turned out to be very fruitful as using orbital func-
tionals in the so-called exact exchange approach cured some
of the notorious problems of LDA and GGAs. In particular,
this approach is self-interaction-free and the discontinuities
of the functional derivative at integer electron numbers,
which the exact exchange-correlation functional should have,
are recovered (for an overview, see Ref. 6). Also, this method
has successfully been used to describe long-range van-der-
Waals interactions, which is not possible in a local density
approach.'®!3 Lastly, use of orbital functionals has opened a
route for a systematic inclusion of correlations into DFT,
once the exchange has been dealt with exactly.'”

Using the exact exchange expression, recently several
promising applications have demonstrated the versatility of
the method.'*"!7 When exchange contributions dominate as
compared to correlation, the exact exchange method should
give reliable results. As long as the correlation contribution
is not known, however, successes should be judged with
care. Nevertheless, the formal development of orbital func-
tional methods in the exact exchange approximation is of
paramount importance on the route to more sophisticated
orbital functionals.

Using orbital functionals requires the use of the optimized
potential (OPM) method*!8-2° to calculate the effective po-
tential (note that synonymously the term OEP is used in the
literature). The foundations of this approach have been laid
by Sharp and Horton?! and Talman and Shadwick,* and were
later developed further by several other authors. The natural
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starting point was a nonrelativistic formulation which has
later been extended to a spin-polarized®? and relativistic al-
beit non-spin-polarized form.'%!° Up to now no formulation
and implementation of this method have been presented in a
relativistic spin-polarized form. It should be mentioned that
these methods require a much more involved analytical and
numerical effort than LDA or GGAs.

In this paper, we formulate the equations and present
exact numerical solutions of the relativistic OPM within
spin-density functional theory (SDFT) for free atoms in the
exact exchange approximation to the exchange-correlation
functional. Our work is motivated by several aspects. First,
a relativistic formulation will allow to make contact to
current-density functional theory (CDFT),?*?* whose formu-
lation naturally starts in a relativistic context. As CDFT is
much more involved than standard DFT, a spin-polarized
ROPM should be one step on the route to CDFT and will
allow to carefully judge results obtained with it. CDFT in its
local formulation and/or approximation nowadays is still not
generally applicable because a suitable exchange-correlation
functional in terms of the current is not available. Second,
studying a spin-polarized relativistic formulation in which
spin-orbit coupling effects are naturally included is a starting
point for studying magnetic anisotropies in solids and ana-
lyzing the impact of relativistic effects in spectroscopy. Also,
starting from a Dirac Hamiltonian where these effects are
naturally included and no recurse to a perturbative treatment
is needed is more elegant from a purists view. Third, an exact
numerical (i.e., basis-set-free) solution of the ROPM evades
any discussion about the choice of basis sets, cutoffs, etc. In
our approach, we will avoid, in particular, the so-called sum
over states approach to construct the Green’s function. The
limits of the sum over states approach can already be seen in
a correlation treatment within the nonrelativistic OPM.?’ Fi-
nally, of course, relativistic effects play an important role in
heavy atoms and are notoriously hard to handle within stan-
dard quantum chemical schemes.

In what follows, we will formulate different solution strat-
egies and approximations for the ROPM equations to judge
their use in the relativistic context. The conventional
method*!8-20 which involves the inversion of response func-
tions is a delicate matter. We will lay down the formalism
and discuss several issues appearing in the relativistic do-
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main. An important one is the construction of the so-called
orthogonal Green’s function which avoids the sum over
states approach. Recently, it has been emphasized that the
so-called orbital shifts®?%?7 lead to an elegant formulation of
the OPM equations®®?° and lend themselves to a starting
point for an iterative construction of the (R)OPM
potentials,”®?’ thereby avoiding the involved inversion pro-
cedure. In addition, this method allows to easily formulate
the so-called Krieger-Li-lafarate (KLI) approximation,
whose virtues we will study here.

The paper is organized as follows: in Sec. II, we derive
the ROPM-SDFT equations and recast them in various
forms. We give details on the construction of orbitals and
response functions in the relativistic formulation and high-
light several aspects which are of special importance for an
implementation. We will also sketch the construction of the
orthogonal Green’s function (a detailed derivation and analy-
sis of the latter will be given in Ref. 34). The next section
will cover all numerical aspects of an implementation. In
Sec. IV, we will present results obtained with various
schemes and in different approximations, and discuss them.
Finally, we give a brief summary.

II. THEORY

A. Derivation of the relativistic optimized potential method
equations

Our starting point is the Dirac equation within relativistic
Kohn-Sham (KS) SDFT3!

Hpd(r) = &y (r). (1)

It is derived from the general KS Dirac scheme by applying
a Gordon decomposition of the four current density into an
orbital current and spin current density, respectively, and re-
taining only the coupling of spin to the magnetic field,
thereby neglecting the orbital current contribution. The
Hamiltonian (in atomic Rydberg units) is given as

2
HD=—ica-V+%B+ V(1) )

The index k comprises the set of quantum numbers which
will be specified in Sec. II C. The Dirac and spin matrices a;,

8¢, (x") S8E, [n,m]

8V ks(r")
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B, and 3, have the usual meaning and are given as (i

=X,y,2)

0, o; I, o o; 0
e ) A by B e A
g 0, 0, I, 0, o

The KS potential can be decomposed into a spin-independent
part and a spin-dependent part (here, the presence of an ex-
ternal magnetic field is excluded):

VKS(r) = VKS(r) + ﬁz : Bxc(r) = Vext(r) + VH(r) + ch(l‘)
+ 182 : Bxc(r)

that, in turn, splits up into an external part, a Hartree term,
and terms containing the spin-averaged and spin-dependent
part of the exchange-correlation potential. The KS potential
is given as a functional of the particle and spin magnetization
densities

oce

n0)=3 o +ce. @
k

oce

m(n)=3 S F{OBEHE) +ec ©
k

For the sake of convenience, from now on we restrict our-
selves to the case B, .=B,..e.=B e, and a magnetization
density which is collinear to B, i.e., m=m_.e,=me, such
that the KS potential takes the form

Vis(r) = Vks(l‘ )+ Bzszc(r)- (6)

In what follows, we will derive the ROPM equations starting

from Eq. (1) and recast it in different forms to make contact

to other formulations found in the literature*%1028 and to set

the framework for a numerical solution of the problem.
Starting from the definition of the KS potentials

SE, [n,m]
on(r)

SE, [n,m]

ch(l‘) = 5m(r)

Bxc(r) = (7)

and applying the chain rule for functional derivatives, one
obtains (neglecting the eigenvalue dependence of E,.)

\_/xc(r):fd3r’d3r"(2 -

ko OVis(r”) oy(x") -

OB, (r")

)
Here, the functions T(r)=(X (r",r)),, and (e

+ ( Oi(x') S, [n,m] + c.c.) 9B, (") (8)

on(r) o OB,.(r") Spi(r') on(r)

—)=(X_1(r",r))mn are the charge-charge (n,n) and magnetization-charge

(m,n) elements of the inverse of the static noninteracting KS-response functions (see Sec. II F). Proceeding likewise for the

term in B,. [Eq. (7)] and combining the results, one obtains
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Spj(x") 8E, [n,m] . ’

(ch(r) )Tz J d3r7d3ru
Bxc(r)

k OVis(r") Spi(r’)
S 8¢, (x") SE, [n,m] ‘e

© OB..(r") 5¢,§(r’)

Multiplying this equation from the right by x(r,r”) that
combines the four response functions as done in the right
hand side of Eq. (9), integrating over r, and using

> J Er(x'(1",0) X o1, 1) = 8,,8(x" — 1)

p=n,m

(10)

_ T T
! Iy(r
derJ(ch(r )) X(l“,r):( V( )) (11)
Bxc(r,) IB(r)
as an integral equation for the KS potentials V. and B,,.
Here, we have used the abbreviations

leads to

8¢ (r") SE, [n,m]
Iyr)= | &' =
lr)= | &r'2 5V () OB

c.c., (12)

((r‘(r”,r))w (x‘l(r’ﬁr))nm) ©)
O D) D))
|

1y(n) = [ s, 2 ] (13)

k 5Bxc(r) 5¢Z(I")

to denote the inhomogeneity of the integral equation (11).
The KS-response function can be expressed in terms of
the orbitals ¢, (see Sec. Il F). The functional derivatives of
the orbitals ¢, with respect to the KS potentials can be ob-
tained by first order perturbation theory (see Sec. II D).
Therefore, if an explicit form for E,. is given, this integral
equation can be solved to obtain the potentials V,,. and B,,.

The potentials V,.(r) and B_.(r) as solution of the integral
equation (11) are determined up to a constant. They will be
fixed using a spin-projected representation (see Sec. IIT A).

B. Alternative forms of the relativistic optimized potential
method equations

Starting from Eq. (11), one can rewrite the left hand side
with the use of Eq. (36) as

$L(r)Gy(r.r) [ch(r’>+EEZB"”(r')]¢k(r’))T (14)

fa 0 et 2
B (t))) \Xun(®") Xy (rX") £ \G(BoGrr') [V, (r') + BEB.(r)]h(x")

and the right hand side with the use of the Egs. (28) as

8¢ (r") E, [n,m] T
— T te
Vis(r) Ob(r’)
v | dpi(r) SE, [n,m]
B.(r) oplr)
OE, [n,m] T

T, tcc
5¢k(r )

OE.[n,
¢ d’/t(l‘)ﬁzsz(l‘,r')ﬁ +c.c.

Bi(r)Gy(r,r)

(15)

Introducing now the orbital shift '

W) = J dSr’Gk(r,r'){(‘_/xc(r/) + BEB () y(r)

5Exc[n,m]]
-, 16
Si(r') (o
this can be rewritten as
> i)y (r) +cc.=0, (17)
k
> i) B () +c.c. = 0. (18)
k

Here, G,(r’,r) is the Green’s function of the Dirac equation
(1) projected into the subspace orthogonal to ¢.*!'%!° For
the spin-dependent potential considered in Eq. (6), its con-
struction is much more involved than in the cases considered
in the literature so far. Its construction is given in Ref. 34 and
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is briefly outlined in Sec. IT E. The orbital shift 4" has been
discussed extensively in nonrelativistic formulations of the
OPM.%?830 [t represents the first order change in the wave
functions due to the replacement of the orbital-dependent

SE[nm] . _
Taw With Velr)

+B2.B,(r) seen by all electrons. In a nonrelativistic formu-
lation, the counterpart of Eq. (17) has been used by Kiimmel
and Perdew?®?’ to construct an iterative scheme to solve the
OPM equations, bypassing some problems in the conven-
tional formulation caused by the need to invert response
functions. Below we will give a relativistic generalization of
this scheme and try to judge its efficiency for open-shell
systems from our numerical investigations.

Following earlier ideas of Krieger et al.>* and Kreibich et
al.,> one can derive yet another explicit form of the ROPM
equations, which makes use of the orbital shifts defined in
Eq. (16). First, by using Eq. (30), one obtains the following
differential equation for the shift:

potential the common potential

[Hp - €y (r) = {( Vi) + BZ B, (r)) (r) - 5 ;]:( )
+ [Axck - ﬁxck] d’k(r) > (19)

where

xc‘k - f d3r¢k(r)(vxc(r) + BE Bxc(r)) d)k(r)

3
xck fd r¢k(r) 5¢k( )

are the averages of the potentials with respect to the kth
orbital. Multiplying Eq. (17) by Vis(r) and using Eq. (19),
one arrives at

The last equation represents an exact transformation of the
ROPM equation By omitting the terms in #*" in the coeffi-
cients a o and a '« LEgs. (21) and (23)], the relativistic KLI
(RKLI) appr0x1mati0n is obtained, which has been exten-
sively discussed in the non-spin-polarized relativistic'®3> as
well as in the nonrelativistic context.%

C. Relativistic wave functions

For the solution of Eq. (1) for a given spin-dependent
potential, we closely follow the ansatz worked out

E {aa‘c/ck(r) + [Kxck -
k

2 E {afck(r) + [Axck -
k
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V(1) 2 (1) (1) + B, (1) 2 (1) By (x) +c.c.
k k

=2V, (r)n(r) + 2B, (r)m(r)
= 2 {an (0) +[A g~ T i (D) (r) +cc},  (20)
k

where

xck(r) <;bk(r) + (;Sk(r){zca V- —(B— 1)

5¢k( )
- B2.B.(r) + ek] #'(r) +cc.. (21)

Likewise, multiplying Eq. (18) by Vi(r) leads to
‘_/xc(r)z ¢£(r)ﬁzz¢k(r) + Bxc(r)E d)]t(r) ¢k(r) +C.C.
k k

=2V, (£)m(r) + 2B, (r)n(r) = 2 {al, (r) +[A,
k

- ﬁxck] ¢Z(r):82z¢k(r) + C.C.}, (22)
with
2
ab(r) = ¢l (r) S — 5¢k( 0 + Bi(r) B2, {lca & —(B -1)
- B2.B.(r) + fk] #'(r) +cc.. (23)

Equations (20) and (22) constitute a system of linear equa-
tions for the potentials. Defining now the matrix

_(n(r) m(r) )
Jr) = (m(r) n(e) (24)
its solution can be written in the convenient form
”—txck] ¢]t(r) ¢k(r) + C~C~}
(25)

L | HL(0) B i (r) + c.c.}

before.3*37 The solutions of Eq. (1) are expanded into four

spinors of the form

ga()xa(?) )

26
if a(r) X-A(F) (26)

&i(r) = E (
A

where g and f are the radial functions of the large and small
components, respectively, and y, are the usual spin-angular
functions.® The combined quantum number k=(nA) is used
to label the states which can have mixed spin-angular char-
acter. Here, n denotes the principal quantum number, A
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=(x,u) is a combined index comprising the spin-orbit and
magnetic quantum number. We also use the following nota-
tion: A=(—k—1,u) and —A=(-«, ).

Assuming the fields Vi(r) and B,.(r) to be spherically
symmetric (see below), inserting the expansion (26) into Eq.
(1) leads to an infinite set of coupled first order differential
equations. The coupling is due to the exchange field B,..
Fortunately, the coupling can be restricted to the coupling of
at most two partial waves:3 one having spin-angular charac-
ter A, the other A. This leads to two possible cases: For the
case (i) |u|=1+3, no A=A coupling is possible and one is
left with the standard set of two coupled radial differential
equations. There is no mixing of spin-angular character: ¢,
=(garxn-if axxn)”. For the case (ii) [u| # (+2, a set of four
coupled differential equations is obtained. The two physical
(i.e., normalizable) solutions found in this case (in each of
which the coupling is mediated through the same w) will
have mixed spin-angular character and have the following
form:

o) = (gAk(r)XA(r)) ga (XA o
oxa® ) "\ i (xa)

where we have introduced for convenience an additional in-
dex vy to discern the two solutions.

The physical solutions are found by inward (starting from
a large r value) and outward integrations (from nucleus),
respectively, starting from the appropriate boundary condi-
tions and matching them at an intermediate mesh point. Let
us mention here that in case (ii) care has to be taken to find
both solutions y=1 and y=2.3%3" Having found one of the
solutions (say, y=1), we found it convenient to exchange the

weights for the radial components belonging to the A and A
components, respectively, and use them as starting values for
the outward integration when searching for the second solu-
tion (y=2).

D. Perturbation theory

Given Vig(r)= Vks(r)+BEZBxc(r) (here, B, is the z com-
ponent of B, ), first order perturbation theory gives the fol-

lowing for the various functional derivatives occurring in
Eqgs. (8) and (9):

P _ (et o) (),
1% Ks(l')
Tt
&fk—(r) = GL(r)Gy(r,1"),
OVis(r)
5 !
52"({)) Gulr' 1) B3 (r).
S5t (r')
5(2—5(1) = $(1)BS.Gy(r.r"), (28)

with the Green’s function
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7y AT
G,(r',r) = 2 dir") ] (r)

=Gj(r.r), (29)
ik €k €

whose construction is given in Sec. II E. By construction, it
is orthogonal to the state ¢ (r).

E. Construction of the orthogonal Green’s function

The Green’s function G,(r,r’) of the Dirac Eq. (1) pro-
jected into the subspace orthogonal to ¢, is defined as the
solution of the following differential equation:

(€~ Hp)Gy(r,r') = 8(r—r1') - gp(r) pi(x').  (30)

For case (i) of having no A—A coupling present, one is left
with a set of two coupled first order differential equations in
g and f. The Green’s function is built from the two indepen-
dent solutions of this system, where as one of them the
physical solution ¢, is taken and a second (non-
normalizable) solution ¢ is constructed following the proce-
dure of Talman and co-workers.*!? It is given as

Gulr,r') = Ty(r,r") = W, () (1) — G(r) Wi (r")
+ Ky (r) i (1), (31)

Here, I'(r,r’) is the Green’s function for the Hamiltonian in
Eq. (2) constructed as

Lulr.r') = )y )O(r = 1) + Yi(r) gx) O = 1),
(32)

fulfilling the equation Hpl(r,r’)=48(r—r’). The auxiliary
function W, is given by

Wy(r) = f Er'T (e ¢ (x'), (33)

and K;=[ d3r’d>,t(r)\lfk(r) is an overlap integral.

For case (ii) with A—A coupling present, the construction
of G, is much more involved (specific details on the con-
struction of the orthogonal Green’s function in this case will
be given in a subsequent publication®* by the authors). A set
of four coupled differential equations is obtained, whose lin-
ear independent solutions shall be denoted as ¢, (the normal-

izable solution), i, ¢, and (Zk, each of which has the form
(27). This leads to

L(r.r’) = g0 g0 = r') + (1) ¢ (r O = 1)
+ GO)PENO( = 1) + YD) O ).
(34)

Using this, the orthogonal Green’s function G(r,r’) has the
form of Eq. (31) with I'; replaced by the one given in Eq.
(34).

F. Response functions

The KS-response functions occurring in Eq. (8) and the
following are defined as
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_on(r)  on(r)
( r) 5‘_/1(5(1',) 5Bxc(r,)
r,r )=
T\ i) aniw)
5‘71(5(1',) 5Bxc(r’)
_ [ Xn(rr") Xnm(r,r’))
_(an(r,l',) Xmm(r7r,) ) (35)

Using the operators O e {l4, B2}, where v=n and m de-
notes the association with the charge and magnetization den-
sities, respectively, the static KS-response functions can be
written as

occ

X' 1) = 2 dL(r)OPGi(r' )0 ¢y(r).  (36)
k

They obey the symmetry property

X' 1) = xb, (r.1). (37)

For w=v=n, one immediately obtains, with the help of Eq.

(29) and (¢, d’j>=5i‘,

Jd3r)(,m(r,r’):fd3r’)(,m(r,r’)=0. (38)

As mentioned above, we restrict the formulation to the col-
linear case with m=me, and B, =B, e,. For the more general
case, the response matrix in Eq. (35) has to be extended to a
4 X 4 block that would include entries corresponding to the
components m,,m, and By, By}, respectively.

xc? 7 xe?

III. IMPLEMENTATION

For an implementation of the above scheme, we use the
relativistic exact exchange, which is given as an explicit
functional of the orbitals

£--S [ fd3r,¢z(r)¢,(r)¢}<r'>¢k<r'>_ 9

r—r’|

We assume a spherically symmetric KS potential, i.e.,

Vis(r)=Vs(r), which implies the same property for V,. and
B... In the self-consistency procedures described below,
spherical averages of the charge and magnetization densities
will be used. Spherical averages of other quantities will be
indicated at the appropriate places. The averaging procedures
will automatically imply that the obtained potentials will also
be spherically symmetric. The orbitals, response functions,
etc., are computed on a logarithmic radial mesh.

The asymptotic boundary conditions are enforced by fix-
ing the potentials using Vi(r)"_" —% in a spin-projected (see
Sec. IIT A) representation.

The boundary conditions for the wave functions for the
outward integration are found by a power series expansion of
the potentials inserted into the respective radial Dirac
equations.’®37 The boundary condition for the inward inte-
gration are obtained likewise.
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A. Direct solution of the integral relativistic optimized
potential method equation

The conventional way of solving the (R)OPM equations
proceeds by discretization of the Fredholm-type integral
equation (11) on a mesh and subsequent inversion of the
response function. The problem to tackle here is that the
response functions will decay rapidly for large r and r’,
which leads to numerical instabilities in the numerical inver-
sion procedure. This needs a sensitive handling of the cut
radii used to present the radial wave functions and all other
related functions. An additional problem encountered here is
the spin polarization of the system. In the nonrelativistic for-
malism, both spin channels are treated separately.?>?® Usu-
ally the decay of the highest lying orbitals in the different
spin channels will be used as an indicator to determine the
cut radii. In the relativistic formulation, spin is not a good
quantum number anymore. However, the highest occupied
orbitals, in general, have nearly pure spin character. Using
the corresponding projection operators 77¢=%(1 B2, a
spin-projected representation of the potentials, the response
function and inhomogeneities can be obtained. Defining

occ

x(r,r'),. = ZE L) PEG(r' ;1) P (),  (40)
k

x has in this projected representation the following form:

r,r’' _(r,xr’
er) <x++( ,) X ,)>. 1)
X-+(r,r’) x__(r,r’)
The inhomogeneities are transformed as
1
L(x) = S[Iu(r) £ I5(r)], (42)

where the spin-projected potentials V(r)=V,(r)+B,(r) have
been used. The inversion of the equations can now be done
by partitioning the y matrix, introducing the appropriate cut
radii in the up- and down-projected channels. For both the
inhomogeneities and the response functions, spherical aver-
ages are performed.

B. Using the alternative relativistic optimized potential method
equations

The alternative set of ROPM equations (25) contains the
potentials in an implicit form and is solved iteratively. Start-

ing with a guess for the potentials V, and B, on the right
hand side, new potentials are obtained, which, in turn, again
are used to obtain a new set, and this procedure is repeated
until self-consistency is reached. Starting with spherically
symmetric potentials and performing the spherical average
on Egs. (20) and (22) implies taking a spherical average of
the charge and magnetization densities. Note that the spheri-
cal averages of the terms in Egs. (21) and (23) are taken at
the very end of the manipulation, i.e., the orbitals are always
used in the full expanded form. The KLI approximation has
been obtained by neglecting the orbital shift term in Eq. (25).
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C. Iterative construction

An iterative construction for the non-spin-polarized non-
relativistic case has been worked out by Kiimmel and
Perdew.?® Here, we give a generalization to the relativistic
spin-polarized case of this approach. Regarding the quanti-
ties

oce

S,(r) =2 ¢l Pl(r) +c.c., (43)
k
S, (r)=>, di(0) B () + c.c. (44)
k

as residuals for the nonconverged problem, the goal is to
modify the potentials such that, finally, the recast OPM equa-
tions (17) and (18) are fulfilled. Further analysis shows that a
good guess of how to modify the potentials is given as

VI (r) = V2M(r) + ¢,S,(r), (45)

BI(r) = BY(r) + ¢,,S,(r). (46)

The self-consistency cycle consists of a KS loop in which the

new potentials V" and B"" are used to obtain new orbitals
and orbital shifts by solving the full electronic problem.
However, we keep the orbitals fixed for some iterations in an
inner loop, updating only the orbital shifts via Eq. (16) and
optimizing the residuals Egs. (43) and (44) using the poten-
tials in Egs. (45) and (46).

IV. RESULTS AND DISCUSSION

In this section, we report on results for the solution of the
ROPM equations in the exact exchange approximation for
the exchange-correlation functional. Besides the exact solu-
tion, either by inversion of the response function or using the
mentioned iterative approach, we also employed the KLI ap-
proximation. Whereas the latter approximation leads to a
fairly simple iteration scheme, the full ROPM equations
turned out to be a numerically delicate matter. The reason for
the simplicity of the KLI lies in the fact that there is no need
for the construction of the orthogonal Green’s function and
orbital shifts, nor for the inversion of badly conditioned ma-
trices.

As the solution of the full ROPM problem turned out to
be so delicate, reliability of the results was ensured by com-
paring results from two computer codes which have been
developed independently of each other, i.e., the involved rou-
tines for calculating relativistic matrix elements, Clebsch-
Gordan coefficients, to solve the Dirac equation, for the in-
version procedure are coded differently. Tests on various
systems gave the same results.

The developed computer codes to solve the ROPM equa-
tions were tested first on non-spin-polarized systems and
compared to the results of an existing implementation.'® We
obtained virtually exactly the same results—deviations of ei-
genvalues of the orbitals were in the range of 107 Ry.
__To obtain the spin-averaged and spin-dependent potentials
V. and B,, respectively, the response functions x,, (v,u
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FIG. 1. (Color online) Top: Spherically averaged static charge-
charge KS-response function (normalized with the square of the
radial coordinates) 72y,,,(r,7")r'? according to Eq. (36) for the free
iron atom dealt with self-consistently using the exact exchange
ROPM scheme. Bottom: The charge-magnetization response func-
tion for the free iron atom 12y, (r,r")r'>.

€ {n,m}) according to Eq. (35) have to be constructed nu-
merically on an (r,r') grid following the procedure de-
scribed in Sec. II F using the orthogonal Green’s function G,
(see Sec. IT E). As an illustrative example, we show in Fig. 1
the normalized response functions associated with the
charge- and magnetization densities for the free iron atom.
Only two of the four response functions of Eq. (35) are
shown, namely, x,, and X,,,. [Out of the four response func-
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TABLE I. Eigenvalues and expectation values for the extension
of the orbitals of the free lithium atom. The nonrelativistic OPM
results are obtained using a code of one of the authors (Ref. 22).

State €,/Ry (ROPM) ¢,/Ry (OPM) (r) (a.u.) (ROPM)

1s_1 -4.93798 -4.93769 0.57436
15410 ~4.10944 -4.10912 0.57396
2501 -0.39261 -0.39257 3.87226

tions x,,, the diagonal ones, i.e., the charge-charge (x;,,) and
magnetization-magnetization (x,,,) response functions, are
very similar. Therefore, only y,, is shown. The off-diagonal
ones, X,, and x,,,, are related by the symmetry relation Eq.
(37).] The charge-charge response function y,, has a detailed
fine structure. The off-diagonal response function ,,,,, on the
other hand, is less structured; its magnitude, however, is
comparable to the diagonal response functions x,, and X,,.-
As is also noticeable, the Y, response function, in contrast
to the x,, and x,., response functions, is mainly sizable
when r and r’ lie in the range of 0.1-2 a.u.

As a first application of the ROPM scheme, results for the
ground state of the lithium atom will be discussed. As Li has
a nuclear charge Z=3, one expects to obtain the solution to
be very close to that of a nonrelativistic calculation. That this
is indeed the case can be seen in Table I. As the ground state

0
-1+ ROPM (Ml) ——
ROPM (iterative) - /\
27 OPM oo /
-3
3 /
€ 4
> /

7
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0.0001 0.001  0.01 0.1 1 10
r(a.u.)
0.1
0.05 ]
0
=
3 /
~ -0.05 :
@ ROPM (MI) —— /
-0.1 + ROPM (iterative)
OPM ............. /
-0.15
0.2 ‘
0.0001 0.001 001 0.1 1 10

r(a.u.)

FIG. 2. (Color online) Exchange potentials for the free boron
atom. Top: Spin-averaged potentials. Bottom: Exchange fields.
Comparison of different solution schemes (matrix inversion vs it-
erative scheme) and nonrelativistic OPM (Ref. 22).
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FIG. 3. (Color online) Exchange potentials for the free boron
atom, as in Fig. 2. Comparison of different approximation levels of
the ROPM (full ROPM vs RKLI) and RLDA.

has only s and 2s states occupied, no relativistic A-A cou-
pling within the shells occurs. As typical for the free alkali
atoms, the two highest occupied orbitals (projected into the
respective spin channels) have a very different decay with
increasing radius r, monitored here by the expectation value
{r).

In Fig. 2, the exchange field of the free boron atom is
shown, comparing the full ROPM scheme [matrix inversion
(MI)] and ROPM using the iterative scheme to the OPM.
Having five electrons and choosing a valence configuration
with a p-like state with || # 2, this is the first system in the

Periodic Table where the full relativistic A-A coupling of the
solution within a p shell occurs. As can be seen in Fig. 2, the
ROPM spin-averaged potential coincides with that of the
OPM. For the exchange field B,, there are slight deviations
between ROPM and OPM. Note that whereas in the nonrel-
ativistic case the p orbitals in one spin channel are degener-
ate, this degeneracy is broken in the relativistic case. Both
full ROPM schemes (MI and iterative construction) give
identical results. It turned out, however, that the computa-
tional speed of not having to invert response functions was
compensated by the very slow convergence of the iterative
scheme (typically, some 30 iterations in the MI scheme vs
300 iterations in the iterative scheme). It should be noted that
both schemes need the orthogonal Green’s function, whose
construction is numerically very demanding and turned out
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FIG. 4. (Color online) ROPM potentials for free atoms, from top to bottom: iron, ruthenium, and osmium. Left: Spin-averaged potentials,
comparing ROPM to nonrelativistic OPM and RLDA. Right: The same for the spin-dependent potentials.

to be much more costly than the matrix inversion. This ap-
plies, in particular, for systems with a large number of elec-
trons.

In Fig. 3, the potentials for boron obtained by solving the
ROPM equations are compared to those obtained by the sim-
plified RKLI scheme and the relativistic LDA (RLDA). For
the RLDA, we used a nonrelativistic exchange functional?
E"[n,,n_] of  spin-projected  densities  n.(r)
= %[n(r)im(r)]. The spin-averaged ROPM and RKLI poten-
tials show the characteristic inner-shell bump at r=0.6 a.u.

as compared to the RLDA (Fig. 3), with the strongest forma-
tion in the full ROPM. The difference in the structure of the
ROPM and RKLI results is even more pronounced in the
exchange field B, (Fig. 3). The RLDA as a local functional
shows only an exchange field B, in the region of local mag-
netization density m(r) with a nearly vanishing amplitude at
the nucleus (see also Ref. 22).

In Fig. 4, the spin-averaged and spin-dependent exchange
ROPM potentials for the free iron, ruthenium, and osmium
atoms are shown and compared to the nonrelativistic OPM
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FIG. 5. (Color online) Shell resolved hyperfine fields as ob-
tained by the ROPM scheme compared to the LDA for iron, ruthe-
nium, and osmium.

and RLDA. For all of them, a d° configuration has been
assumed, i.e., [Ar]3d%4s?, [Kr]4d®s?, and [Xe]4f!*5d4%s2, re-
spectively. In all cases, it turned out that the outermost d
orbitals have almost 100% spin polarization. As is apparent,
with growing ordering number, the spin-averaged exchange
potential in the ROPM gets pushed down at the nucleus
when compared to the nonrelativistic OPM. The differences
in the spin-dependent exchange do not follow such a system-
atic trend, but show also distinct changes.

As can be seen in Fig. 4, the spin-dependent ROPM ex-
change potentials B, as compared to the LDA have a larger
amplitude which also extends to the vicinity of the nucleus.
This is a manifestation of the nonlocality of the ROPM po-
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tentials. In a local approximation like the LDA, a nonvanish-
ing exchange field can only arise in spatial regions where a
finite magnetization is present. This also has an important
impact on the hyperfine fields. In Fig. 5, we show the mag-
nitudes of calculated hyperfine fields for the above men-
tioned free atom cases (Fe, Ru, and Os). A very prominent
shortcoming of the local approximation to density functional
theory is the overbinding in molecules and solids. Another
example is the underestimation of the core polarization con-
tribution to the magnetic hyperfine field due to spin-
polarized valence states.>® In fact, Akai and Kotani could
more or less remove this problem by the use of the nonrela-
tivistic OPM.* In Fig. 5, the impact of the use of the ROPM
on the hyperfine fields is shown for Fe, Ru, and Os in a shell
resolved way. For Fe, the corresponding ROPM and LSDA
results differ only quantitatively. Nevertheless, one notes a
stronger polarization of the inner core states for the ROPM
case. In the case of Ru and Os, the differences are much
more pronounced. The reason for this is that the valence
states of these elements have a pronounced mixing concern-
ing their spin character due to spin-orbit coupling that sensi-
tively depends on the exchange field B,. For Fe, on the other
hand, the valence states have essentially pure spin character.

V. SUMMARY

We have presented the relativistic optimized potential
method formulated in SDFT and implemented the scheme.
We have derived several forms of the ROPM equations to
give insights into issues connected with the relativistic OPM
and to rederive the RKLI approximation.

An implementation of the ROPM was carried out using
the relativistic exact exchange functional and making the ap-
proximation of spherically symmetric potentials. We pre-
sented results of the full ROPM scheme as well as the RKLI
approximation for open-shell atoms and compared them to
RLDA results.

All results are in full accordance with previous nonrela-
tivistic and unpolarized relativistic studies. Due to the non-
local character of the ROPM, the resulting exchange poten-
tial V, is, in general, more sharply structured than its LSDA
counterpart. For the exchange field B,, the differences are
more pronounced because, for the LSDA case, B, takes ap-
preciable values only in the spatial regime with an appre-
ciable spin density. Comparing the various schemes to solve
the full ROPM problem, we found the same results using the
matrix inversion or iterative scheme. Application of the
RKLI approximation led—as for corresponding nonrelativis-
tic studies—to potential functions with their peak structure
less pronounced when compared to the full ROPM. Compar-
ing the obtained potential functions with their counterpart
obtained in a nonrelativistic way, one finds—as to be
expected—only slight differences for light elements. With
increasing atomic number, differences for the potential V.
show up, in particular, in the nucleus near regime. For the
exchange field B,, on the other hand, differences occur over
the whole spatial regime.

The SDFT-ROPM formalism and the related techniques
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presented here were applied to free atoms, but can straight-
forwardly be used to deal with the tightly bound core states
in molecules and solids. The corresponding treatment of
band states for spin-polarized solids can be achieved by us-
ing an appropriate band structure technique that represents
the electronic structure in terms of Bloch states.*%*! A more
general scheme, however, is achieved by representing the
electronic Green’s function to represent the band states of
solids, as has been done by Kotani and Akai*?> for the non-
relativistic case. The corresponding development of the tech-
niques connected with a SDFT-ROPM for spin-polarized sol-
ids is in progress, which—in contrast to previous work—

PHYSICAL REVIEW B 77, 045101 (2008)

makes use of a formulation of all functional derivatives and
response functions in terms of the Green’s function.
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